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ABSTRACT

This paper is-ttm--astlfr-±a vsarls' b three whkch analyze an adaptive approxi-

mate approach for solving (n+l)-dimensional boundary value problems by replacing

them with systems of equations in n-dimensional space.

Znthehspaper-w sho how to find reliable a-posteriori estimates for the

error and how these can also be used in the design of an adaptive strategy.

Various numerical examples are
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1. INTRODUCTION

In a recent paper, [6], we introduced the concept of dimensionally reduced

solutions to an elliptic boundary value problem. These are obtained by project-

ing (in the energy) the true solution of the boundary value problem in the n+l-

dimensional domain w x [-h,h] onto spaces of the form

h 
N

VN f{ I w (x)* (y/h)lw arbitraryl

where 4 1}j=0 *is a given set of functions on [-1,1], (x are coordinates on

w and y ranges over [-h,h]). For some basic ideas behind this concept, see

[61 and the introduction to [5]. In [6] the focus was on the right selection

of the *jVs . It was shown there that for a very wide class of problems the

4's should be selected such that

span {* 2k-l -N(Pk

where P is a second order ordinary differential operatdr intrinsic to the

elliptic boundary value problem.

In [7] we analyzed the convergence properties of such methods as the order,

N , increases.

The present paper, which is a direct continuation of the previous work,

deals with the problem of reliable a-posteriori error estimation. It also de-

signs an adaptive algorithm for the selection of the right dimensionally reduced

solution. As it follows from [6] and [7] a high number of basis functions

may be needed (depending on the desired accuracy) either if the thickness of the

domain, h , is not sufficiently small or there are singularities in the true

solution to the boundary value problem. (Because of the corner in the domain such



singularities are often present in the neighborhood of 3 x f-hi and

awx {h}.)

Since singularities are local phenomena it is of utmost practical importance

to introduce dimensionally reduced solutions that permit N , the order, to

vary throughout the domain w . This aspect, specifically the adaptive choi~e

of the distribution for N , is also addressed here.

We now give a short review of the contents of this paper.

In Section 2 we give a precise formulation of the model problem (which is

identical to that of [61) and prove some auxiliary results.

Section 3 is devoted to the construction of an estimator for the error.

The main theoretical results in this section are Theorem 3.1 and Theorem 3.2,

which show that the introduced estimator is an upper bound for the error but on

the other hand is not too conservative (away from singularities and for rea-

sonably small h ). Numerical experiments verify this and furthermore indicate

that even for relatively large h or strong singularities the estimator Is of

the same magnitude as the error. The problem of how to detect if the estimator

is unacceptably conservative and how to improve It are addressed in Section 4.

In Section 5 we extend the concept of dimensional reduction to include a

possibly different number of basis functions, *, in different parts of the

domain. We also design an adaptive strategy to select the right distribution for

the number of basis functions. This strategy is based on our ability to give

reliable estimates for the error much in the same way as the strategy used by the

finite element solver F.E.A.R.S. to generate an 'optimal' grid (cf. [1]).

Finally Section 6 (and also 4) contains a numerical example that illustrates

how well the error estimation and the adaptive strategy perform in practice.
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2. NOTATION AND THE MODEL PROBLEM

Let H be a separable Hilbert space with inner product <u,v> and norm
1/2

IHull - <u,u>

A denotes a (possibly unbounded) self-adjoint linear operator in H with

domain of definition D(A)

Furthermore we assume that A is a strictly positive-definite operator,

i.e., there exists C > 0 such that

VuED(A): CIiu1 2 < <Au,u>

Let M be a self-adjoint bounded linear operator in H . M is also

assumed to be a strictly positive-definite operator.

D(A1/2 ) is itself a Hilbert space with inner product <u,v> + <A1/2u,A1/ 2v>

The same is true about D((M- A)k ) for any integer k > 0 .

I denotes an interval on the real line. L 2(I;H) is defined as the set

of strongly measurable functions u: I H such that Iu(.) I is an element

of L2 (1), (cf [4]). The same goes for L2(I;D(A1/2)) and L2 (I;D((M-A)k)).

We also need Sobolev spaces of functions with values in H,V(A 1 /2) and

D((M-A)k ) . H I(I;H) denotes the space of functions u: I - H such that

u(')EL2 (I;H) and A. u(')EL2(IH) (cf. [2]). The spaces for D(AI /2)

and D((M-A)k) are defined similarly. The derivative is taken in the distri-

butional sense.

H (1) denotes the standard Sobolev space on I

Assume a and b are real valued functions in L (1-1,1]) such that

a0 < a(y)

b < b(y)0- 
.
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for some constants a >0 , bo > 0 ah and bheL-([-h,h]) are then defined

as

ah ( y) = a(y/h)

bh(y) = b(y/h)

By P we denote the differential operator - -i(ah -j) Let f and

g be two arbitrary vectors from H . We consider the following model problem

(1) Ph( d)Juh + hNAuh - 0 in ]-h,h[

_AU h .g for y -hIs dy h

ah J_ Muh _ f for y -- h

The precise formulation of (1) is

(2) uhE Hl([-h,h];H)lL2([-h,h];D(A
1/2))

Bh(uh,v) = <g,v(h)> - <f,v(-h)>

L ,vC-H([-h,h] ;H) n}L2([-h,h] ;D(AI/ 2)

where 8h  denotes the bilinear form

*h h

B') < 1/2 d uM/2 d 1/2 1/2
8h(UV) %<M T v>dy + b ?A u,A v>dy

h f -h n

L.
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For more details see, [61. In that paper we introduced the notion of dimensionally

reduced solutions to (1). Let {4' fi CI ([-I,11) be a given sequence ofj j=0 -

linearly independent functions (referred to as basis functions).

Definition

hThe dimensionally reduced solution uN of order N is the projection
h

of u onto the space

N
VN = { P(y /h)xjIxjEV(A 1 / 2), j = O,..,N}

The projection is with respect to the inner product Bh(U,V)

We proved that in order to obtain optimal rate error estimates for h -V 0

there is essentially only one choice for the sequence { i}jiO . This is related

to the operator P = b -a -
dy dy

THEOREM. There exists a sequence of linearly independent functions

4 )CO 'with

(Ii)(pi span{ 2i- Is JnfP =~0  iI,

that has the following property:

(ii) For any integer N > 0 and for any given set of vectors

,)((AM)) there exists a constant CN (independent of h)

such that

Iuhuh hi 2 CNh+1/22NII E  '_C

i
N(Pi ) here denotes the nullspace of P, and III is the energy-norm

lm °I
, .

• , " -"
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associated with the bilinear form Bh . This is slightly different from the

formulation in [6], where we used the norm

h h

(f I u(y)JIIdy +f A'uyjd
-h -h

It is obvious though, that these two norms are equivalent with constants in-

dependent of h .

For more details concerning this theorem and its converse we refer to 16].

It is now conveinent to introduce

Definition

Any sequence {} that has the two properties listed in the previousj J-0
theorem is said to be an optimal sequence of basis functions.

It follows immediately from Theorem 4.1 of 16] that any two optimal sequences

of basis functions { }J=0 and {* =0 satisfy

span{ }) 0 N span{1 }O N > 0

We shall often use this fact without explicitly mentioning so.

In the present paper we need a slightly different but weaker version of the

result contained in Theorem 4.1 of [6].

LEMMA 2.1. Let be an optimal sequence of basis functions,and let

N be an integer > 0.

For any nontrivial set of vectors f,geH there exists a constant CN

Ni
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(independent of h ),such that

C h2N+1/2 < huhN_ u-2NI I E

for h sufficiently small.

Proof.

The proof is by contradiction, i.e., we assume

•ll hi hi E .h2N+1/2llu -24111 E - u~ i

for some sequence hi , with hi - 0 as i * -

If f and g are linearly independent, Theorem 4.1 of [6] then gives that

span'fl 2 N+ 2 C span{ip I2N 91Sj.-0 J.=0

and this is obviously a contradiction.

We therefore only have to consider the case when f and g are linearly

dependent, say f a-g , g # 0 . As in the proof of Theorem 4.1 of (61 it now

follows that

(3) d o d 12N()dy ON+I - a -y N+1 C- span{~ 1J }J.0

where 0 and are as introduced in Lemma 3.1 ot 16]. Since

span[- 2N . span( d . d *I Nd J } J.0 y jTyj }J-0

and



Id d I
b- a

(3) immediately leads to the conclus

o1 E

Because of the fact that 0 and

(4) d* -9

But according to [61 0 and sa

a Pl) 1 ,

so (4) is obviously a contradicti

For the analysis in this paper

one concerning the true 
solution u I -,

sionally reduced solutions 
uh

N

LEMMA 2.2. Let u denote thS.

k.>O

f,gtE

then
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h NLEMMA 2.3. Let uN - jl0j(y/h)xj  denote a dimensionally reduced solution

of order N . If for some integer k > 0

f,geV((AM-1)k

then

xjED((M- A) k+ ) Vj: 0< j <N

Proof.

Let xEH N+  denote the vector (xo,..,xN  It is clear than x is

the solution to

h _CA A + h <DM= 1y.14 +l

where C {cijij0 ,D = {d i and r ={rlI , are given byijijoiji , J=O i 1-0

1 1

CJ-f = 1 (Y)(yY)dy, dij f ( y %)dy

-1 -1

and ri = Yi(l)g - *i(-l)f Nrespectively. (We have here used <-,.> also to

denote the inner produce 1 <xiYi> in H N + )
1=0

Due to the fact that A is self-adjoint and M bounded we get that
N+I

xE[V(A)] and

hCAx + h-1DMx r , i.e.,

Ax h-lC-1 r h- 2 C-1 DMx



By successive application of this equality it follows that r eP( (Ak- )k)JN

implies xlE[D(Qk- 1A)k+l)] Nl This finishes the proof of the lemma.
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3. A-POSTERIORI ERROR-ESTIMATION IN THE GENERAL CASE

As already mentioned in the introduction one purpose of this paper is to

derive a reliable technique for a-posteriori estimation of the error introduced

by dimensional reduction. The error here is measured in the energy-norm. The

key ingredient of this technique is a socalled estimator Est, which we now

proceed to define.

Let e4EH (-h,h];11) be the solution to

d d h h(5) Ph( i)Mc - P (dy)MuN - b AuN in I-bhf

hd d h

ah ME - g - ah dMh for y= h

d dh
ah d M=f- hdY- a N for y=-h

The exact meaning of (5) is

(6) eE H [-h,h] ;H) and

h

j dyC ,M 1 12 v>dy <g,v(h)> - <fv(-h), -

-h

,"h h
1fahM/2 d h.1/2 d < h

TyuNM1/ v>dy bh <AUv>dy

-h -h

VvEH1 ([-h,h];H)

h

In the equations (5) and (6) we have used the fact that uN(y)4EV(A) , which

immediately follows from Lemma 2.3 with k - 0
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Since (6) is a Neuman problem for E it only has a solution provided

h
<x>- <fx> - J bh<Au ,x>dy - 0 VxEfi

-h
h

Because of the equations defining uN it follows that this is true if
N

(7) lEspan{I N

Note. According to Theorem 3.1 and 4.1 of [6] condition (7) is in general

necessary and always sufficient to ensure that

Mlu -u NI1E+ for h 0

Certainly (7) is satisfied for any optimal sequence of basis functions.

We now define

Jh
(8) Est jh1lM I /2" ' cd 2dy)l12

-h

The function E is clearly not uniquely determined, but since only C is

involved, Est is well-defined. We shall now show that the estimator Est

exhibits some very attractive properties.

THEOREM 3.1. Let uh be :he solution to (2) and uN a dimensionally

reduced solution of order N > 0 corresponding to a sequence of basis functions

that satisfies (7). If Est is as defined in (8) then

A&M-
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I l lluh-_lhi EI Est

Note. In the terminology of (1] this theorem says that Est is a

'.guaranteed' upper estimator.

Proof

Clearly

h _ h,(ut h~ v vluh-uN 11E - supI~h(U-N,)/IvIE ,

where the sup is taken over vEH 1 ([-h,h];H) nLL2([-hh];V(A1 /2)) According to

the definition of c this is nothing but

h

fu a< 1/2 d E 1/2 d vd
-h E

and using Schwarz's inequality we now get

h

hh a 112 d E1l 2dy)I/ 2  EstI NuNIIIE < f hIM" dy
-h

For use of the estimator Est in actual computations it is important that

it is very close to the real error in a wide class of situations. In the termin-

ology of (I1 this is expressed by the requirement that Est be asymptotically

exact. The following theorem contains a precise formulation of the asymptotical

exactness for the estimator Est . It is essential here that the dimensional

reduction is based on an optimal sequence of basis functions.

tI
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THEOREM 3.2. Let 1,P O  be an optimal sequence of basis functions. Let
h h

u be the solution to (2) and uN be the difevionally reduced solution of

order N > 0 . Assume furthermore that f and g are elements of
P((AM- 1 ) 71+ 1)

If Est is as defined in (8) then

Est = I1 uh-uNlllE(1+0(h2 ))

Note. Here [.] denotes the integer part.

Proof

Since f,gEV(AM-I1 ) it follows from Lenma 2.3 and (5) that c in this case

can be selected so that

EEH ([-h,h];D(A))

We now have

h h

Est= j ah<M 1/2d CM 1/2 d Edy/(dy ah1 M 1/2 .. E1 12dy) 1/2 <

-h 
-h

h h

< (supi f ah<M/ 2 A MI1/2 d v>dy a 1/ 2 d C1 2dy)1/2.~-y--- Ivd~ /lllvlllE)'(lllElllE/( f IIh11  d E 1d, l2

-h -h

where the sup is taken over

vEH1 ([-h,h;H) nL
2([-h,h];V(A1/

2))
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As in the proof of Theorem 3.1 this last expression is equal to

h

11, h_-hl 1II/2 1E-1111/(faII ± 12 d,)'/'
-h

The theorem will therefore be proven if we show that E can be chosen such that

h h

(9) b JA 112 El 12dy < CNh 2 ~f ah I IM"/2  d El 112dy

It is clear that by appropriately selecting the undetermined constant of

E , we can obtain

(10) h J 1/ 2E12dy <Ch 2 f hIIdA /cildy
fbhiI~/ d 1/

-h -h

-Ch
2  h <T , iyAc>dy

Now from (6), the definition of c , we have

h h
d d f 1/2 d 1/2 d -Jcd %<Mt' ('A~d

fd f.< TY T, Y ~ed
-h -h

h

<g,0A(h)> -<f,M lAc(-h)> - J%<MI1 d uNhM 1/ M 'Ac>dy-

-h

f rb <Auh M-'AE>dy
jh N'

-h
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h
and introducing u this is, because of Lemma 2.3, equal to

8h(MlA(u hUN),e)

By an application of Schwarz's inequality, this expression can be bounded by

From the fact that A is strictly positive-definite together with (10) it

follows that

h
< I ( d Allc 2 2dy)i/12

[[I [[[ C(lh ( ah[[ -d

-h

and since we only need to consider small h this gives

h[hah  y A'I/'2 112 dy (M-A(uh-uh),c) <

f h dy 8 N h
-h

< C[I M - 1A(uh~uN) ih  IE(I '  A"'1
2c[ 2dy)1 /2

-h

By insertion in (10) we conclude that

h

(11) -h IA1/2c1 2d h21 I Ml(uh~uh) I

For the rest of this proof let us assume that N is even (the procedure

for N odd is quite similar, only there are slight variations of Lemma 2.1 and

Theorem 3.1 of (51 needed in this caae).



18

It follows immediately from the proofs of Lemma 2.2 and 2.3 that M-Auh
-i uh h h

and M NAu are solutions to the same problems as u and uN just with f

and g replaced by AM-if and AM1-g . Because of Theorem 3.1 in [6] and the

assumption that fgED((AM-I)N/2+I) we get

HIii h < hhh N+1/2
1H-iA(uI-uN)11E --

and this combined with (11) immediately leads to

h1 IAI/ 2e1 l2dy < CNh2+

-h

On the other side from Lemma 2.1 it follows that

2N+l hh 2CNh < tIluh-uNItI[

From the definition of Est and Theorem 3.1 of this paper we therefore get

h
h2N+l 1 ~ ~/ 2 d Id

-h

that is we have finally proven

Sh A bh 1A/2 ,12 dy <CNh 2f ah,1M/2 d_ ell ,2dy

-h -h

Since the estimator Est is to be used in actual computation it is of utmost

importance that it can be calculated very simply. The equations (6) and (8) that
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include the solution of an O.D.E. are therefore not well suited as a formula

for the calculation of Est . In the following we shall show how easily Est

can be calculated by means of different formulae. For these formulae to be valid

it is essential not only that the dimensional reduction is based on an optimal

sequence of basis functions but also that this sequence satisfies a special

orthogonality condition.

Let { )= denote an optimal sequence of basis functions which is
i 1.0

orthogonal in the semi inner-product fl a d d * dy ( is clearly
-1 dy dy

uniquely determined modulo a constanf and a scalar.)

We define a sequence { }J=0 by

1 1

YU)= Y(Y) - b(t)dt)-I b(t)*l(t)dt

-1 -1

j(Y) = (y) - P(-l) for J > 2

(Oj J > 1 , are therefore uniquely determined modulo a scalar.)

LEMMA 3.3. Let { O be a sequence as defined above. Let

N
uN - jL (y/h)xj denote the corresponding dimensionally reduced solution of

order N . If c is as defined in (6) then there 2xist constants fCk}I 0  and

{ck}0 0  such that

d *)(y/h)M-(co(f+g) + c (f-g)) +

+d M 1 Ac( ) + of-)

+ 2 )(y/h)hM- Aclx 0 for N * 0
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and

d ( N+ )(y/h)hM A(c _l+CNxN) +

Td (y/hN+) hM1Al NXN lcxN+

+ ( * )(y/h)hM A for N > 1

Proof

Since {O }JiO is an optimal sequence of basis functions it follows

immediately that

N+2E- 1. 0 (ylh) j

J=O

for some cfY 0 < j < N+2 , i.e.,

d N h2 Id

dy j=1 y Oj)(y/h)'cj

For any I < j < N and x ED(A1/ 2 )

1 h
,d 2 =M

1/2  1/2 r d2
<MrjX>j a(-j0j * dy = E< jM X>hJ a (~iy/h)I) dy=

-l -h

h

=h ah <M /2 d 10 (y/h)x]>dY

-h

where the last equality is due to the fact that {J O is orthogonal in thed J .
semi inner-product fla - dy . Now from (6) we get that the last

-1 dy dy

expression

LIJ
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=h8h (uh UN O(y/h) x)

and this vanishes because 4N is defined as a projection. We have therefore

proven that

<MEJ ,x> =0 Vl < j < N, x4EV(A1 )

or

(12) E=0 V < j< N

For j =N+l we get as before

1 h

<Me 1 X>f a ~ * ) 2 dy hJ ahM1/ 2 d EI2d[,(/~ld

and this is according to (6)

h
h

-h<g,4 N~l (I)x> - h<f,o N~1 (-1)x> - h) b h<Au N , N+l (y/h)x>dy

Jn this identity we also used the orthogonality of the 0 's . Concerning t.he

last term

h N

h Jb<AuN, ONl(y/h)x>dy - h2 J. <AxjIIx:> b(y)o J(Y)ON~l(y)dy

-- 1

This vanishes for N -0 , because I 1b(y)O 1(ydy - 0 ,and therefore establishes
-1

the formula for c£4+ in the particular case N - 0

In the folloing we are left to consider N > I Let j be any integer

0 < j < N-i, then



(13) Jb(y)jY) 1.+(y)dy J
-l~

where the a.i's are selected such t~

This is possible because {

Since N> 1 and fy 1 dsE-la(s)

N+(1 +(-l) f a

We already know that *i-)=0 4

(14) O~ 1

it follows immediately from an inte

(14) that for any integer 0 < j< '.

-l~

The last identity is due to the ort

i < N+1 In summnary we have ther

1h

<Me 1 x>J a(! 0,,)'dy = hJ b <

-1 -

-h . 2 (<Ax X bON

that is
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values in the case of constant coefficients a and b

Example 3.1

If the functions a and b are both constant it immediately follows that

every optimal sequence of basis functions {i I=O satisfies
every0

N
spanfPjiJ =

0 
= all polynomials of degree < N

for any N > 0 , and vice versa.

The specific optimal sequence of basis functions _Oj )=0 used in Lemma

3.1 and Theorem 3.3 is now (modulo a scalar)

0 = 1

01(y) - y

i (y) = fYtjil(t)dt , j > 2
-1

where Rk denotes the Legendre polynomial of degree k

Because of the alternating even and odd polynomials, it immeidately follows

that

ck k =0 Vk >0

Simple algebraic manipulations with the Legendre polynomials now give

c0  1/2a

cI - b/a and

ck - b/((2k-1)(2k-3)a) for k > 2

.- - - A.
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From the definition of Ck immediately follows that

k a(~j ~4.l~ 1/2

(1 dy) *k , i.e.,

C0 = l/2a1/2

C1 0 (12/a1/ an

C~ ~ 2 1/22/a]12 n

Ck [ 2b 2 / (2k+l) (2k-i1) 2kA- 3) 2) for k > 2

We shall now show how one can derive another set of formulae for the

a-posteriori error estimator. As it will turn out these iormulae are much better

suited for practical applications. For the case N = 0 it is clear that

Ax 0 = Ch 1 (f-g) . In the following we therefore only consider N >1.

00hODN
LEMMA 3.2. Let {Ck}k=O, {C k}k=O and uN 3 *(Y/h)x i be as in the previous

ij =0
theorem. Then there exist constants IDii 1 < i , j < 2 such that

11
A(C NXN-1'NXN) = h D N M(g-ah d, lhS()+

+ h 1 D M( f-ah1 T- MuN(-h)) and

ACN+,xN =h 'D NM(g-ah - Mu~(h)) +

-1D2 2 M d f

+ h MfahdYMuWr)) for N>l1

Proof.

From (5) and Lemma 3.1 it follows that
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h N ~ N+l)(Y/h)MA~~c~~~N

(16) -P -T)M bA. (- ad I- (CXN:+N

-d d -1
a- )(y/h)M Acx .

dy dy ON+2 N+1il'

if we integrate the right hand side of (6) by parts, set v 0 0(y/h)-x and

apply the identity (16), the result is

hd 1 4M1 A(c + 1 1M1 Ac = -x . u
N CNxCNX"NN / N gf dy N-_h

with

1

N~= dy dyN lan

-1
1

N2 da dy N+2

Performing the similar procedure with v =4(y/h)-x instead we get

h2 1 -1 22 -1

hdN MA~c NXNl+c N xN) +hd N M Ac 1 x.l =

01 1)(-a.h d MuN(h)) - 01(-l)(f-ah dy Mt4(-h))

with

1

(1 21.f a -L ON~lody and
N -1 d

(12 L0 Od
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The lemma therefore immediately follows if the matrix

d = {d ij,2
N ijl

is always invertible. The proof of the invertibility follows by contradiction.

Assume d is not invertible for some N . This implies that some nontrivial

linear combination of the columns of d vanishes. In terms of the functions

*N+l and *N+2 this says that some nontrivial linear combination sl1N+ I +

S2 N+2 exists such that

1

(17) a L (slN+l+s20N+2) v dy 0
-l

for v = and v = I By performing an integration by parts we easily see

that this identity must also hold for v = 4. 2 < J < N . Since the sequence

4 j}j=O is an optimal sequence of basis functions we know that

d d N
ds d b I ady - dy ISlN+I+S2 N+2) =J=O J J

for some set of constants (a " Combining this with (17) we conclude that

d d
dy SN++s2N+2) 0

Due to the fact that s10N+l(y) + S2 N+ 2(y) = 0 for y 1 ± 1 this implies

SlN+le+ S20N+2 - 0
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which obviously contradicts the fact that this is a nontrivial linear combination.

The difference between the formulae given in Theorem 3.3 and those that

are based on Lemma 3.2 is that while the first include elements of the form

Ax the latter are expressed solely in terms of f,g and the x,'s . In

practical applications we seldomly know the exact values of the xi's . In-

stead we compute some approximate values x. , e.g. using a finite element

method. The error introduced by using approximate values derived, say from

finite elements, in the expressions of Lemma 3.2 can be neglected. The reason

is that the difference between x1  and x in the H norm (viz L2) is

normally very small. The problem with the expressions of Theorem 3.3 in this

context is that in general Ax is not at all defined.

As before we now give the values of the constants Dii in the case where
N

a and b are both constants.

Example 3.2

Assume a and b are constants. In this case we already know that N= 0
N

Lemma 3.2 therefore reduces to formulae for ACNxN I and ACN+,xN , N > 1

It is easily seen that these are

AC = 
1  1/2 d hACNXNl h ( 2 a(2N+l))- [M(g-a h dy MS(h)) +

+ (-l)NM(f-ah r Mu(-h))]

-. S .
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ACt4 1 xN h (2a (2N+3) ) 1/ 2 [~(~ d Mh)

+ (1) "M(f-%a 4 -LM 4(-h))

for N>1I
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4. IMPROVED ERROR ESTIMATION -- A SPECIFIC EXAMPLE

As mentioned before it is very important that we are able to estimate the

error accurately. Theorem 3.2 shows that our estimator Est does exactly that

provided the data is sufficiently regular and h is not too large. In this

section we shall address the problem of how to detect if the estimator Est

is too conservative, due to singularities in the data or large h , and what

can be done to correct it. For simplicity we consider the model problem

3 )2 3.2]uh

[(-x) + (-) = 0 in h - 10,1[ x 1-h,h[

hyau
h

Sw g for y- h

h
u h 0 for x - 0,1

2
where g is an element of L ([0,11)

Let = be the sequence of polynomials introduced in Example 3.1.

h
The dimensionally reduced solution of order N , uN , has the form

h N
uh(xy) I *1(y/h)v (x)

yhere v EH e l([0,1]), 0 < j < N . Let eN denote the exact error, i.e.,

e h -h

N N. Since everything is even in y all the terms in the dimen-

sionally reduced solutions corresponding to odd indices vanish. From here

on we only consider dimensionally reduced solutions of even order 2N

Let us start by giving a table that shows the relative error
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(lIje 2N11E/t luhliIE) and the efficiency index of the estimator Est (Eff

II1e 2N1tIE/Est) in the case g(x) = n/4 , for N = 0 and N - 1 respectively,

and for different values of h

Table 4.1

N =0: N= 1:

h Rel.Error Eff. h Rel.Error Eff.

1/2 0.67 0.88 1/2 0.121 0.69

1/4 0.43 0.94 1/4 0.051 0.68

1/8 0.24 0.97 1/8 0.019 0.68

1/16 0.12 0.99 1/16 0.007 0.68

1/32 0.06 0.99 1/32 0.002 0.68

From the table it is evident that the efficiency-index approaches 1, as

h .0 , for N - 0 , but that this is not so for N = 1 . The numbers therefor2

clearly show that some smoothness condition, as in Theorem 3.2, is essential in

order to ensure that this index converges to I for h - 0 . For most practical

applications though, an efficiency-index of 0.7 is completely satisfactory and

no corrections to Est are needed. It is also important to note that h -1/2

corresponds to a square and that Est still gives a very reliable estimate for

the error. The next table lists the efficiency-index, also in the case where

g(x) - w/4 , but for N - 2 and 3 and 3 different values of h

By a comparison of Tables 4.1 and 4.2, it is seen that the efficien,y sig-

nificantly decreases as we include more and more polynomials.
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Table 4.2

N = 2: N = 3:

h Rel.Error Eff. h Rel.Error Eff.

1/2 0.045 0.53 1/2 0.022 0.43

1/4 0.019 0.52 1/4 0.008 0.38

1/8 0.008 0.55 1/8 0.003 0.41

In the following we shall take a closer look at the derivation of the

estimator Est for the purpose of suggesting corrections that can increase the

efficiency to any desired level. We shall only work out the details of a first

correction.

The exact error e2N is the solution to the boundary value problem

a 2  (3) 2

(x) + ]e 2N in

e2N

ay = 0 2N for y - h

ae 2 N

ay = -2N for y = -h

e2N = 0 for x = 0,1

with

r 2 _ [ ( x 2 D ( ) 2 h= + ]U2N(xy)

and

h
P~ h)

2N g(x) - - d2N(x,h)
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In termis of complimentary energy the norm of e2N ,Ill j 2NI IE j9 can nov be

characterized by

I~2N11E (13, 04E f (5(Yf 2 X)dd

(tE 0 -h

where

(s't) EM iff

2 2(s,t) E(L(2)

Sa a r
- - 3y T2N

t P2N for y =h and

t -P 2N for y =-h

If we define t 0by

y to =r2N

to=P2N for y -h and

to -P2N for y -- h

it is clear that (O,t 0 )EM .On the other hand it is also clear that Eat

0J' jh (x,y)dydx)l/ i.e., Est is simply a particuiar valuei of a functional,
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the minimal value of which is the exact norm of the error. One way to improve

the estimatior Est is therefore to take the minimum over more than just the

single function t . This should not be exagerated since we also have to keep
0

the formulae simple. Define

x

s(x,y) f (r r2N(Z,y) - r 2N~z)(~-i 0~(y/h))dz

0

and

t(x,y) = -h 2N(x)tC(y/h)

where r 2N (x) denotes the function

h

r WNx -2 r2 (x,y)dy

-h

and r~is an arbitrary element of H ([-1,11) It is obvious that

a Xs t = r2N

If furthermore C satisfies r (l) I 1 4~(-l) =-1 it also follows that

t P2Nfor y = h , and t = -p 2N for y =-h

From Lemma 3.1 we get the identity

r2 (xY) = : t 1 ) (y/h)- W2 (x

where 1,,denotes the Legendre polynomial of degree 2N+l ,so it iimediately
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follows that

1 h

fj (S2 (x,y) + t 2(xy))dydx

0 -h

(h3 l~x + h J(-L(t2N (y)-C(Y)))2dJ(r 2 ,)2 dx)1/

-1 0 -1 0 0

It should be noticed that the estimator Est is obtained from this with the

choice C(y) = i 2N+1 (y) If we define

1

A(h) = h3f r 2N11(x))2 dx and

0
1 x

B(h) = h }(J'r2N) 2dx , then

0 0

the previous expression can be writter as

1 2 1/2

(18) ( + J(dy(t2N +(f)d4(y))) 2B(h))

It is easy to see that the minimum of this expression over t approaches

(2N =ydAh) / Est as h -~0

-1

provided A(h)/B(h) -* 0 for h -*0 .In the case that A~h)IB(h) -~for

h -) 0 the minimum of the expression (18) approaches

(4A'%!.)B(h)) 1/ as h - 0



Based on these asymptotics we introduce,

{tEst if A(h)

Est ,
1 (4A(h)B(h))

where T is some specified constant.

tell us whether we shall use the value 044,

Since we know that hr2N(X) P2N(X) £1'

expressed in terms of 02N . It folloVi,

exactly if P2N is smooth. Since the-

the interval [0,11 we get that the

tion of the error in parts of [0,11 t

the interval -[0,1] into K disjoint

KEat 2  = ( [ -

where Estl(I) refers to the estimato*

The following table shows the efficiete7

Ille 2NHIE/ESt2) in the case g(x) -"IC

values of h . The interval [0,11 VSi

length, i.e. K = 8 , and the 2onstant-',r

chosen to be 
102

Although the efficiency-index is

improvement over Table 4.2. Again not *!

of h . If additional accuracy of tN

obviously be obtained by an extension',

Whether such additional corrections

A
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5. SOME REMARKS ON AN ADAPTIVE STRATEGY

As already mentioned in the introduction, the goal of this paper is not

only to derive reliable estimates for the error, but also to use these estimates

as tools in an automatic selection of the right order dimensionally reduced

solution for a given problem.

First let us introduce a slight generalization of the concept of dimen-

sionally reduced solution. Instead of projecting onto the space
N 1/2 N
{ (y/h)x Ix jED(A 2) , j O,..,N) we project onto { 1p(y/h)x Ix. EK.,

j=oj j=o

N1/
JO,..,N} , where 1Kj )j=0  is a family of closed subspaces of D(AI /2)

To see the importance of this generalization and describe the ideas behind

the self-adaptive strategy we shall consider the case that A is a differential

operator on some domain Q . Let R be divided into k disjoint subdomains

Ri '1 < i < k , and let Ni , 1 < i < k , be k nonnegative integers. Set

K. = {uEV(A 1 /2) Iu(x) = 0 for xE U Qi , the extended concept of dimensionally
SN i <j

reduced solutions with this family {K'} =0 , N = max{N.} is one that permits
J i i

different order of the dimensionally reduced solution in different parts of the

domain Q . This is extremely important for practical applications, where a

low order dimensionally reduced solution may very well be satisfactory in the

interior of the domain and away from singularities in the loads and at the same

time a high order solution is required near the boundary or near singularities.

As a total estimator for the error let us use an expression of the form

k 1/2

(19) ( i [(N i) 2
i-l

p - -r . V J -
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where n i (Ni) refers to some estimator on the domain SIi with respect to

dimensional reduction of order N1  (ni could for example be the estimator

Est or the corrected estimator Est 2 of the previous section.)

To set a goal for the 'best' distribution of the orders {N I for

a dimensionally reduced solution we need the concept of cost. Let us assume

that the cost of (solving) the dimensionally reduced problem with orders

k{N is given by

k
il (ON 1+l) 'm (Si ) ,

where a and 8 are two positive constants and m(Qi) is some measure of Q

As a 'best' distribution of the orders for a dimensionally reduced solution

we define one which for a given cost minimizes the energy norm of the error.

(We could also have defined a 'best' distribution as one that for a given value

of the energy norm of the error minimizes the cost. Which of these two defini-

tions we take makes no difference in the strategy we propose.)

The following is very heuristic in nature and by no means an exact verifi-

cation that the strategy works. Let us use the expression (19) as if it were

the exact norm of the error. Secondly let us assume this expression to be defined

for all positive values of the Ni's , and not only integers. By introduction of

Lagragean multipliers it is easily seen :hat a 'best' distribution of the Ni's

has to satisfy

3 C (independent of i ) suct that

aN [n (N )]2)

(20) ai C, Vi
(ON+1) a-1 m(i)
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In practice we only have the values of the n.'s at integer points and a

discrete equivalent of (20) is then

i(Ni+l ) ] 2 2 i(Ni ) ]

(21) c , Vi
(aN 1 +I) a-lm(i

We shall also assume that n(Ni +l) is significantly smaller than n(N.) so

that instead of (21) we get

(22)[ni(Ni) ]2 %,~

(22) C , Vi
(aN i+l) a-m(Q i)

The strategy we propose is one that aims at equilibrating the left hand

sides of (22). We do this in a way similar to the adaptive finite element solver

F.E.A.R.S. (cf. [1]) . Let us assume that we have arrived at a distribution
ok

(No)I and that the estimate for the error is unacceptably large. Our strategy
i i-l

is simply to find j such that

0o]2

j (6l 7

is maximal, and then increase N by 1 . In the next section we shall see

how well this performs in a practical example.
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6. A NUMERICAL EXAMPLE

Consider the same problem as in section 4, namely

_ + (_ja)2] h 0 in h = ]0,1[x]-h,h[

au 
h

T g for y = h

Du 
h

au = -g for y = -h

h
u hf_ 0 for x = 0,1

Let [0,1] be divided into the four subintervals I. f [(i-l)/4, i/43
1

1 < i < 4 . A dimensionally reduced solution can now have different order in

the different intervals 1, 1 < i < 4 . As basis functions we choose the poly-

nomials introduced in Example 3.1.

The equations that define the dimensionally reduced solutions are solved by

introducing a Finite Element discretization in the x-direction. Piecewise linear

functions on a regular mesh are used as test and trial functions for the Finite

Element Method. Since we want to illustrate the behavior of the dimensional re-

duction, and are here not interested in any contribution from the x-discretization,

we choose a very fine grid of meshsize = 2- 9 . The involved linear equations are

solved by a Cholesky decomposition combined with iterative refinement. In the

computations that we present here g(x) is chosen - r/4 . Since this choice of

boundary data makes the problem symmetric in the line x - we only need con-

sider x in the interval [0, ] . Let 2Ni , 1 < i < 2 , denote the order of the

dimensionally reduced solution in Ii . The following table shows the error on

the whole interval [0,1] (- Ille 2iMEl and the work (heredefined by (N1+l)
3 +

3 a(N2+l) ) as a function of the pair N - (N1,N2) for two different values of h.

-- ~... .. .. .... . . .. . . ........... .a . ,. . o .. . • '- - ..-, -- _. ... "



42

Table 6.1
2N2  0 2 4 6

2N1

0. 3974 0.3257 0.3168 0.3160

0

1 4.5 14 32.5

0.3662 0.0730 0.0721 0.0720
2

error

4.5 8 17.5 36

0.3517 0.0383 0.0270 0.0270 work

4

14 17.5 27 45.5h=

0.3499 0.0292 0.0134 0.0134

6

32.5 36 45.5 64

2N2 0 2 4 6
2N

0 .3014 0.2296 0.2270 0.2267

0---

1 4.5 14 32.5

0.2540 0.0359 0.0359 0.0359

2---

4.5 8 17.5 36 error

0.2484 0.0134 0.0130 0.0130-

4 - - - -work

14 17.5 27 45.5 h

0.2479 0.0063 0.0055 0.0055

6---

32.5 36 45.5 64

Based on the numbers in this table we can now find the entries with the pro-

perty that the error is smaller than any error obtained with the same or less

work. These entries are marked in the following table.
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Table 6.2

062
h-

66

2 0
2N1

The tables 6.1 and 6.2 clearly illustrate the advantage of a non-uniform

2 
h

distribution of the polynomials. It is easy to see that the true solution uh

in the limit as h 0 has a parabolic behavior in the y direction, also

for x in the middle of the interval [0,1). This is reflected in the fact
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that the pair (0,2) is slightly better than (2,0), it also explains the signifi-

cant decrease in the error obtained by choosing the pair (2,2). For the higher

order polynomials there is a clear tendency towards concentration near the boun-

dary x - 0 (and x = 1) in the entries marked in Table 6.2 . This concentration

is more visible the smaller h is ; for h - the pair (6,2) is not as good as

(4,4) but for h - 1/4 the error obtained by (6,2) is less than half the error

by (4,4) with only a slight increase in the work.

We now want to test the adaptive strategy outlined in section 5 on this exam-

ple. We consider the case h f ,where non-uniformity in the distribution of the

polynomials is most advantageous. As an estimator we use Est 2 of section 4,

with the constant T set to 102 and each interval I ; divided into 2 subin-

tervals of length 1/8. The following table shows the efficiency of Est 2  (Eff2 =

jjle2I,Ej/Es t2) as a function of the pair 2N= MlN, 2N 2 ) .

2N2

Table 6.3 2N1 - 0 2 4 6

0 0.94 0.99 1.00 1.00

2 1.06 0.68 0.68 0.68 Eff 2

1.09 0.60 0.59 0.59 h -

6 1.09 0.57 0.53 0.53

It is evident from Table 6.3 that Est 2 provides a reliable estimate for the
error even in the case of variable order. We also note that Est 2 is not nec-

essarily an upper bound for the error, when the orders of the polynomials are
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allowed to vary. Steps could be taken to correct this, but on the other hand com-

putational experience shows that this effect is insignificant, and that Est 2  is

very close to an upper bound in most cases.

Let us start with an initial distribution for the orders of the polynomials

given by

(2N1,2N2) (0,0)

Based on the present formula for the work and the error estimate we now compute

61 , J - 1,2, as in section 5. The result is

61 - 62 = 0.10

We can therefore proceed to both (0,2) and (2,0). According to Table 6.1

(0,2) is only slightly better than (2,0), so this apparent "failure" of our strat-

egy is of very little significance.

For the pair (0,2) we compute

61 -0.10 , 62 - 0.14 x 10
- 2

and for the pair (2,0)

61 -0.31 x 10 - 2 , 62 = 0.10

In both of these two cases we are told to proceed to the distribution given by

(2,2)



46

For this pair we get

61 = 0.14 x 10- 2 and 62 = 0.59 x 10- 6

i.e., if we want higher accuracy with dimensional reduction our strategy selects

the pair
0

A

(4,2)

In this case

61 0.14 x 10 - 3 and 62 0.16 x 10 - 5  ,

so that additional requirements to the accuracy will lead us to the distributio.

(6,2)

The path that our strategy goes through can schematically be representft as

(0,2)

* (0,0) (2,2) - (4,2) - (6,2)

(2,0)

and based on the tables 6.1 and 6.2 this is clearly seen to be a very good choice.

The strategy has been tried in a variety of other situations and has consi.tently

been very effective. It has also been tried with different measures for 6?,e work.

Here it should be noted that by changing the measure of the work we may entirely

change the "best" distributions for the polynomials, but the strategy detects that

easily.



47

7. CONCLUSIONS

In the following we list some conclusions concerning the approach

of dimensional reduction developed in a series of three papers ([63, [7], and the

present).

a) It is common in engineering to distinguish between structures with large

and small thickness (see e.g. [3]). The approach presented here entirely

avoids this somewhat artificial categorization.

b) This approach gives in an optimal and adaptive way the advantages of asymp-

totic expansion (when the thickness is small) and the effectivity of the

spectral or p-version methods (when the thickness is not small, or strong

singularities are present). It has been shown that these two requirements

uniquely characterize the approach.

c) Reliable aposteriori error estimates can be obtainedfor this approach, and

they lead immediately to an effective adaptive strategy.

d) The approach is numerically very robust and works well independent of the

thickness and regularity of input data.

e) The underlying mathematical theory and numerical experiments show the direc-

tion for various generalizations. These shall be dealt with elsewhere.
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